

iISCE: Integrated InSAR Scientific Computing Environment on the Cloud

PI: Paul Rosen, JPL

Objective

- Extend the ISCE software toolkit to support UAVSAR data formats and metadata
- Extend the ISCE framework to enable the seamless handling of extremely large data files
- Extend the ISCE framework with enhanced processing capabilities supporting UAVSAR scientists, including PolInSAR capabilities and 3D vector estimation
- Develop UAVSAR-specific data manipulation tools that enhance the utility of UAVSAR data for science users, including segmentation and decimation tools suited to precision interferometry

Geodetically accurate inSAR Application From User Input Ports Input Ports Input Ports Core Management Input Ports Component Core (Legacy) Component Finalization These Object Oriented

Object Oriented Framework for scientists

Approach

- Coordinate needs and requirements with UAVSAR project
- Develop an understanding of the processing model for UAVSAR and its commonality with the spaceborne SAR processing model in ISCE
- Develop readers to allow processed UAVSAR images to be read into the ISCE workflow
- · Generalize the ISCE workflow for stack processing
- Develop writers to deliver high level ISCE output in UAVSAR project formats
- Implement 3D deformation tool in ISCE

Co-Is/Partners: Eric Gurrola, Piyush Agram, Marco Lavalle, Giangi Sacco, JPL

Key Milestones

• Ingest UAVSAR single look complex data into ISCE	11/13
Develop UAVSAR segmentation and resampling tools	01/14
 Develop UAVSAR baseline re-estimation tool 	04/14
 Develop UAVSAR PolInSAR module for ISCE 	05/14
 Complete user documentation and orientation materials 	08/14

